Simvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer
نویسندگان
چکیده
Statin has been known not only as their cholesterol-lowering action but also on their pleiotropic effects including anti-inflammatory and anti-oxidant as well as anti-cancer effect. Nrf2 (NF-E2-related factor 2) is a transcription factor to activate cellular antioxidant response to oxidative stress. There are little known whether statins affect activation of Nrf2 and Nrf2 signaling pathway in colon cancer cells. We investigated whether simvastatin stimulates the expression of Nrf2 and nuclear translocation of Nrf2 and which signal pathway is involved in the expression of Nrf2 and antioxidant enzymes. We investigated the effect of simvastatin on the expression of Nrf2 and nuclear translocation of Nrf2 in two human colon cancer cell lines, HT-29 and HCT 116 through cell proliferation assay, Western blotting and immunocytochemical analysis. We evaluated which signal pathway such as ERK or PI3K pathway affect Nrf2 activation and whether simvastatin induces antioxidant enzymes (heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1), γ-glutamate-cysteine ligase catalytic subunit (GCLC)). We demonstrated simvastatin-induced dose-dependent up-regulation of Nrf2 expression and stimulated Nrf2 nuclear translocation in colon cancer cells. We also demonstrated that simvastatin-induced anti-oxidant enzymes (HO-1, NQO1, and GCLC) in HT-29 and HCT 116 cells. PI3K/Akt inhibitor (LY294002) and ERK inhibitor (PD98059) suppressed simvastatin-induced Nrf2 and HO-1 expression in both HT-29 and HCT 116 cells. This study shows that simvastatin induces the activation and nuclear translocation of Nrf2 and the expression of various anti-oxidant enzymes via ERK and PI3K/Akt pathway in colon cancer cells.
منابع مشابه
Hypoxia increases Nrf2-induced HO-1 expression via the PI3K/Akt pathway.
Accumulating evidence indicates that transient hypoxic preconditioning improves resistance to severe hypoxia and enhances the therapeutic potential of endothelial progenitor cells (EPCs) in cell-based therapies for vascular repair and ischemic disease; however, the mechanisms underlying this process remain unclear. This study aimed to test the hypothesis that hypoxic preconditioning activates n...
متن کاملEffects of mild hypothermia on expression of NF-E2-related factor 2 and heme-oxygenase-1 in cerebral cortex and hippocampus after cardiopulmonary resuscitation in rats
Objective(s): The aim of this study was to investigate the effects of mild hypothermia on expression of NF-E2-related factor 2 (Nrf2) and heme-oxygenase-1 (HO-1) of rat cerebral cortex and hippocampus after cardiopulmonary resuscitation and further investigate the possible mechanism of action. Material and Methods:To copy an asphyxia heart arrest model, Sprague Dawley rats were randomly divided...
متن کاملPanaxatriol Saponins Attenuated Oxygen-Glucose Deprivation Injury in PC12 Cells via Activation of PI3K/Akt and Nrf2 Signaling Pathway
Panaxatriol saponins (PTS), the main components extracted from Panax notoginseng, have been shown to be efficacious in the prevention and treatment of cerebrovascular diseases in China. NF-E2-related factor 2 (Nrf2), a transcription factor regulating antioxidant and cytoprotective responses to oxidative stress, has received particular attention as a molecular target for pharmacological interven...
متن کاملLico A Enhances Nrf2-Mediated Defense Mechanisms against t-BHP-Induced Oxidative Stress and Cell Death via Akt and ERK Activation in RAW 264.7 Cells
Licochalcone A (Lico A) exhibits various biological properties, including anti-inflammatory and antioxidant activities. In this study, we investigated the antioxidative potential and mechanisms of Lico A against tert-butyl hydroperoxide- (t-BHP-) induced oxidative damage in RAW 264.7 cells. Our results indicated that Lico A significantly inhibited t-BHP-induced cytotoxicity, apoptosis, and reac...
متن کاملHomocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells
Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...
متن کامل